Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?
Дырочек было две. Первая несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка та самая ультрафиолетовая катастрофа, которая заключалась в том, что как_то неправильно излучало абсолютно черное тело.
Что такое абсолютно черное тело?
Еще в 1860_х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике абсолютно черное тело (АЧТ). По определению, АЧТ это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!
Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно_сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.
Модель абсолютно черного тела. АЧТ это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.
Рис. 5
Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.
Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат тело должно было излучать бесконечно большую энергию!
Это было крайне неприятно увидеть такое в расчетах!
Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии результат эксперимента.
Рис. 6
Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».
Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.
Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда_нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном_подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой_то странной нелепицей.
В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! в кванты не верил.
Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание сама природа заставила.
В двух словах напомню историю с фотоэффектом. Дело было так.
В XIX веке открыли явление фотоэффекта при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено вы видели ее на уроках физики.
Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.
Рис. 7
Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему_то с его частотой. И при достижении какой_то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.
Почему?
Эйнштейн, занявшийся этой проблемой, закрыл вопрос со свойственной ему гениальностью. Он, взяв на вооружение идею Планка о том, что излучение и поглощение энергии происходит порциями, квантами энергии, заявил:
Ребят! Свет не волна! То, как он себя ведет при выбивании электронов, говорит о том, что так вести себя могут только частицы. И чем они энергичнее, тем больше энергия выбитого электрона. А энергия световых частиц зависит от их частоты. То есть влияет не количество частиц (интенсивность света), а их качество (частота). Слабенькими частицами хоть уполивайся, у них недостаточно энергии для того, чтобы вырвать электрон из металла. А вот даже одной энергичной частицы достаточно, чтобы вырвать один электрон, то есть реденького потока энергичных частиц света вполне хватит для начала фотоэффекта. Бинго, друзья!
Частицы эти позже назвали фотонами.
И во всем этом была двойная странность. Во_первых, о каких частицах речь, если свет это волна, что доказано опытным путем!? Во_вторых, если Эйнштейн говорит о частицах, то, черт возьми, какая у частиц может быть частота? Ведь частица это объект, а не процесс!
Молекула воды объект. А волны на море синхронизированный процесс колебания молекул воды вверх_вниз, вверх_вниз
Пружина объект. Колебания пружины процесс
По_моему, тут все ясно. Есть же разница между ногами и ходьбой, верно? Ну, какая может быть частота (длина волны) у табуретки?
Однако Эйнштейн был прав, что и подтвердили бесконечные опыты с фотоэффектом. Десять лет некто Роберт Милликен проводил опыты с фотоэффектом, пуляя кванты света на катод. И он был такой не один. После чего физический мир согласился с правотой Эйнштейна. А Милликен, который на основании этих опытов вычислил постоянную Планка и написал: «Я потратил десять лет своей жизни на проверку этого эйнштейновского уравнения 1905 г. и, вопреки всем своим ожиданиям, был вынужден в 1915 г. безоговорочно признать, что его уравнение экспериментально подтверждено, несмотря на всю его несуразность. Ведь это противоречит всему, что мы знаем»
Эта цитата хорошо показывает с какими вопросами столкнулись физики в конце 19-начале 20 века, поэтому я её привёл полностью, она интересна и в ней нет, не нужных эмоциональных преувеличений для развлечения скучающих обывателей, иначе читать не будут. 
Дополню позже.